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Spin-spin correlation function near the critical point 
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Institut fur theoretische Physik der Universitat Heidelberg, Philosophenweg 19, D-6900 
Heidelberg 1, FRG 

Received 14 November 1977 

Abstract. Starting from Wilson’s differential renormalisation group equation with smooth 
momentum cut-off we calculate the spin-spin correlation (S,,S-,) near the critical point for 
the one-component vector model in lowest non-trivial order in E .  We show that it differs 
only by a short-range term and a trvial factor from the self-correlation of the wavevector- 
dependent eigenoperator Oh(4. g). This self-correlation is calculated following the pro- 
cedure given by Wegner and expanded in expectation value of translationally invariant 
eigenoperators. Comparisons with the results of various authors are made. 

1. Introduction 

In this paper we investigate the singular behaviour of the spin-spin correlation function 
(S,S- , )  near the normal critical point as T K  T - T, approaches zero. BrCzin et al 
(1974a, b) derived the expression 

(S,S- , )  = q-2+rl(A + Bq-””.r + C,(q-”” 171)l- + . . .) (1.1) 

by means of the Callan-Symanzik equation. A, B, C+ (for T > T,) and C- (for T < T,) 
are constants. a, 77 and Y are the common critical exponents. The result (1.1) was 
suggested by Fisher and Langer (1968). BrCzin et a1 (1974a, b, 1976) generalised it to 
the case of a finite magnetic field. Fisher and Aharony (1973) showed that the 
expression (1.1) is consistent with an expansion of the correlation function around 
dimensionality four and they determined the coefficients A, B and C,. 

On the basis of a differential renormalisation group (RG) equation by Wilson and 
Kogut (1974) (see 0 2), Wegner (1975, 1976) gave a general procedure (see D 3) for 
calculating the correlations of eigenoperators and described their singular and scaling 
structures near criticality. The purpose of this paper is to show how to calculate the 
spin-spin correlation function in lowest order in E = 4 - d for the one-component model 
by means of Wegner’s procedure (d is the dimensionality of the system.) Since S,  is not 
an eigenoperator of the linearised RG it has to be expanded in eigenoperators. We found 
that S,  is a linear combination of the two eigenoperators oh(q) and O,(q) for arbitrary 
translationally invariant Hamiltonians (Stutzer 1977). Since 0, is redundant the 
singular contributions of the spin-spin correlation are given only by the singular part of 
(Oh((I)Oh(-q)). Combining the scaling laws for this singular part and for the function 
((S&,)- V ) w 2 ( q )  given by Wilson and Kogut (1974) in 9 4 we derive a general 
expression for the spin-spin correlation as a function of the wavevector q and the 
scaling fields gi where the 4 dependence can be given explicitly. ( V  denotes the volume 
of the system and w ( q )  is a regular function depending on the cut-off function in the RG 

0305-4770/78/0012-2439$02.00 @ 1978 The Institute of Physics 2439 



2440 K Stutzer 

equation.) Furthermore we see in 0 4 that in the critical limit the spin-spin correlation is 
an exact homogeneous function of 4 and gi and that one can obtain expression (1.1). 
The first three expansion coefficients in (1.1) were determined by evaluating 
( o h ( q ) o h ( - q ) )  (Stutzer 1977). These coefficients do not depend on the cut-off function 
which is shown in § 5 .  There we discuss universal ratios, give the results of our 
calculations and compare them with those of various authors. 

2. Renormalisation group equation 

The Hamiltonian H of the systems considered here (a factor - l /kBT is incorporated in 
H )  is a functional of the Fourier components 

S,  = ddrS(r) e-iq'r i 
of a classical one-component spin field S ( r )  in local space. A translationally invariant 
Hamiltonian can be written as follows: 

We require the functions U,, to be regular at 4 = 0. Then the interaction is short ranged. 
In the theory of critical phenomena developed by Wegner (1972) the differential RG 

equation 

dH/d l=  %H (2.2) 

determines the functions un(q l ,  . . . , an-l, I )  for a given initial Hamiltonian Ho. The 
formal solution of (2.2) is HI = e3'Ho 3 is the generator of the RG transformations 
9, = e . It is constructed such that the partition function 2 is conserved. For our 
calculations we use the RG generator (Wilson and Kogut 1974) 

'91 

6 H  S 2 H  
+ j (1 + tT + s,- 

4 as, as,ss-, as, as-, 
The first term and the first integral of the right-hand side of equation (2.3) change the 
length scale by a factor e-', i.e. q + q e'. The second integral transforms the variables S,. 
This transformation acts like an incomplete elimination of S,  with large q (RG with 
smooth momentum cut-off). The otherwise arbitrary cut-off function 8(q2) in (2.3) with 
e(0) = 0 has to be regular in q z  and monotonically increasing. The constant 7 is 
determined such that the requirement (2.4) (see below) can be fulfilled. 

Hl depends on a finite number of (I-independent) thermodynamical variables ui like 
temperature T, magnetic field h, etc. For the Hamiltonian H? at the critical point, {U;}, 
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one requires that there is a fixed point H* such that 

lim H i  = H* 
1-aS 

A fixed-point Hamiltonian obeys 

(2.4) 

dH"/dl  = 0; (eH* = 0. (2.5) 

In the following we sketch Wegner's procedure (1972, 1976) of representing a 
Hamiltonian Hl as a function of 1 and the U , .  According to this procedure one assumes 
that there exist parameters g,,  the scaling fields, and constants y,, the scaling exponents, 
such that the g,  are functions of the U ,  and the Hamiltonian HI can be expanded in 
powers of the terms g,  e')'. We write g, ( U )  and 

H~ = H ( g  e'') (2.6) 

where g e'' and U denote the ordered sets {g, e'!'} and { U , }  respectively. Here the y, are 
real numbers. The scaling fields g,  with y, > 0 (y, < 0) are called relevant (irrelevant). It 
follows from the requirement (2.4) that the relevant scaling fields gyl have to vanish at 
the critical point 

g:"(v') = 0 (2.7) 
whereas the irrelevant scaling fields g y  may be different from zero. Furthermore we 
must require H ( 0 )  = H*. 

To find the scaling exponents y,, the functions g, ( U )  and finally H ( g )  we can proceed 
as follows. We rewrite the RG equation (2.2) by (2.6): 

D H ( g )  = % H ( g )  (2.8) 
with 

(2.9) 

Differentiating both sides of equation (2.8) with respect to g ,  we obtain from (2.3) the 
eigenvalue equation 

9 k ) O i  ( g )  = YiOi ( g )  (2.10) 

for the linearised RG generator 

with its eigenoperators 

O i ( g ) =  d H ( g ) l a g i  (2.12) 

and eigenvalues yi. Now we are able to calculate the y ,  and the eigenoperators 
Oi = Oj(0) of 2(0) by solving equation (2.10) at g = (0). First, however, we must 
calculate a fixed-point H* because 2 depends on H*. 

The volume V is the eigenoperator Oo of 9 with the scaling exponents y o  = d. We 
assume that the operators 0, form a complete set in the space of the functions of S,. 
Then it is cohvenient to expand HI in the 0, around H*: 

H' = H* + 1 Pi(1)Oi. (2.13) 
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Because of the assumption above the functions pul(l )  can be expanded as a power series 
in g, eyJ: 

(2.14) 

where gN stands for any product g,,g,, . . gfr of scaling fields with N = { j l ,  j 2 ,  . . . , j r } ,  
N ! = r ! . g e r = l , ~ ~ = ~ , , + y , , +  . . . + y l ,  andyra=O. 

Inserting (2.13) into (2.2) one obtains differential equations for the functions p, ( / ) .  
Since the RG generator is non-linear in H (see (2.3)), these differential equations are 
non-linear in p,(I) and coupled. Therefore in general it is not easy to find exact 
solutions. But we can determine the coefficients b,N from (2.14) by iteration- 
provided, however, the inequality y ,  # YN ( N  # {i}) holds, which we assume. Then an 
expansion of Hl in the terms g, e'!' is defined. For the operators OI(g) we get from 
(2.12), (2.13) and (2.14) 

1 
Pt(1) 2 GbiNgk' eyNi 

(2.15) 

with M = N u { i } .  

(2.1 l), in the linear approximation we get 
Another method is to expand Z, p,( l )O1 in the fields p, = pl(0) .  From (2.2) and 

H, =H*+C f i r e Y ~ ' 0 , + ~ ( p 2 ) .  (2.16) 

By iteration it is possible to compute the higher-order terms in p,. Comparing (2.16) 
with (2.14) we set b , ~  = 0 and blr,, = fill. 

Now one requires that each relevant field p:' (with y ,  > 0) in (2.16)depends linearly 
on this U, which is thermodynamically conjugate to 0,. According to the requirement 
(2.4) we write fi?' = c, (U, - U P )  with an appropriate scale factor c,. From the inversion of 
the series (2.14) we can see that then the relevant scaling fields gJe'(u) can be expanded 
in the U,. Because of (2.7) we have gY'(v) = c,(u, - U;) in first order. For the temperature 
difference pE = cE(T - T,) we introduce 

7 =/.LE, gE = 7 + 0 ( T 2 )  (2.17) 

I 

with the scaling exponent yE  > 0 and with the operator 

OE(g) = 0 E  f 1 b i{E,E)TOi 4- O(T2). 
I 

(2.18) 

3. Operator-operator correlation function 

In order to compute wavevector-dependent correlation functions on the basis of a RG 

equation it is convenient to use, in addition to equation (2.10), the eigenvalue equation 

-%I, g)Oi(q, g )=  YiOl(4, (3.1) 
for 2 ( q ,  g)  = 2 ( g ) - q  * V with q-dependent short-range eigenoperators Oi(q, g), 
Oi(g)= Oi(0, g). Wegner (1975, 1976) developed a procedure for calculating opera- 
tor-operator correlation functions (0 j (q,  g)Ok(-q, g)) starting from the initial Hamil- 
tonian 

Ho = H(g)+KiOl (q, g)+KkOk (-q, g). (3.2) 
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The parameters K~ and K k  depend on 4. From (3.2) one gets the following expression for 
the correlation functions: 

where V F  = In Z is the free energy. A factor - l / k B T  is incorporated in F. 
Now we will find the Hamiltonian HI by applying the RG equation (2.2). For that 

purpose we represent H' as a sum of H ( g  e") and an inhomogeneous part which we 
expand in operators o,(q, e', g e") and in powers of K~ and K k .  Then we solve (2.2) 
iteratively and get first the Hamiltonian linear in K (cf (2.16)): 

H:" = H ( g  e'')+ K J  eYI'O,(q e', g e'')+ K k  ey*'Ok(-q e', g e'') (3.4) 

where we use (3.1) and the initial condition (3.2). In the next step the non-linear part of 
%HYm generates perturbations of order K J K k ,  K :  and K ; .  Here we are interested only in 
the contribution proportional to K J K k .  This is expanded merely in translational invariant 
operators O,(g e') = Ol(q, e', g e'') with 4, = 4 + (-4) = 0. Thus one gets 

H/ =H:" + K j K k  1 f i i j k ( 4 2  g, l ) o i ( g  e Y ' ) + O ( K : ,  K2k). (3.5) 
1 

At this point we assume that the q! e'-dependent operators in H' with 41 f 0 become 
very small if 1 tends to 00. This property was not proved generally (cf Stutzer 1977), but 
it is fulfilled in all known cases (Wilson and Kogut 1974, Wegner 1976). Inserting HI 
from (3.5) into (2.2)one can derive differential equations for the coefficients f i t & .  From 
the general solutions of these differential equations one can see (Stutzer 1977) that the 
limit 

(3.6) 

exists (cf Wegner 1975). After neglecting the wavevector-dependent operators in H' 
with a sufficiently large 13 [we integrate the RG equation from i t o  0, using (2.10), (3.6) 
and the initial Hamiltonian Hr. This yields in linear order in K J K k  

'+a2 lim e-Y"a, ,k(q,  g, I )  = M I l k ( 4 ,  g )  

(3.7) 

From the general solutions of the differential equations for the expansion coefficients 
M i j k  one can show that M i j k  consists of two contributions: 

M j j k  = R i j k  + S i j k .  (3.8) 

R i j k  is regular at 4 provided none of the numbers y i  - y j  - y k  - y N  are non-negative 
integers. Otherwise logarithmic singularities arise which we do not discuss here. The 
function S j j k  becomes singular at 4 = 0. 

From (3.7) we can easily derive 

Since the free energy V F  is invariant under the RG transformation Ho+go ,  the 
following representation for operator-operator correlation functions follows from 
(3.3), (3.8) and (3.9): 

(oi(q, g ) o k ( - q ,  g ) ) = c  ( R i i k ( 4 ,  g ) + S z j k ( 4 ,  g ) ) ( o i ( g ) ) .  (3.10) 
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4. General formulae for the spin-spin correlation 

In  general, the operator S, is not an eigenoperator of 3. In  order to calculate the 
spin-spin correlation (S ,S- , )  by the RG methods described before we need to expand S,  
in eigenoperators of 3. This is possible (Stiitzer 1977) because the operators 

oh(q, g)’ w(4)(sq -SH(g)/as-q) (4.1) 

Or(q, g ) =  w(q)SH(g)/SS-q (4.2) 

are eigenoperators of 9 for arbitrary H(g). The function 

is regular for small q. Thus we get the desired relation 

sq = w-’(q)(Oh(q, g)+or(q, g)) 
and thereby 

(sqs-q) = w-’(g)((Oh(q, g)oh(-q, g))+ 2(oh(q, g)or(-q, g)) 

+(Or(q, g)Or(-q, g))). (4.5) 
Now we make use of the fact that Or(q, g) is redundant (Stiitzer 1977). Redundant 
operators Oy”(q, g) have the properties (Wegner 1976) that their expectation value 
vanishes and their correlation with another eigenoperator of 3 is short ranged: 

(4.3) 

(4.4) 

Qh(q, g) is non-redundant. Thus the equation 

follows from (3.10), (4.5) and (4.6) with the abbreviations Ri = Rit,h+2Rihr+Rirr and 
Si = S i h h .  R, and Si are regular in the scaling fields g, (Wegner 1975). We expand 

with the notation from § 2. r i N ( q )  is regular at q = 0, Si&) is singular at q = 0. 

scaling laws 
Now it  is possible to determine the q-dependence of (S,S-,) by applying the three 

SiN (4 = e (*Yh-y,)’SiN(q e‘) (4.9) 

(O,(g))o = e‘Yi-d)’(Oi(g e”)), (4.10) 

W’(~)((S,S-~)~- V )  = e(’-n)’w2(q e‘)((s, e l ) -  V) (4.11) 

where Yh in (4.9) is the positive scaling exponent 

Yh=t(d + 2-t7) (4.12) 

of oh(q, g). The index of (. . . ) I  indicates that the expectation value is taken for H(g  e”). 
Equations (4.9) and (4.10) are given by Wegner (1975, 1976). Wilson and Kogut 
(1974) derived equation (4.11) by means of a different RG generator than that in (2.3) 
(cf Wegner 1976). 
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We choose the RG parameter 1 so that q e’ = e  with q = qe holds. Then we apply the 
scaling laws (4.9)-(4.11) to equation (4.8) and get 

C r i N ( q ) g N ( O i ( g ) ) -  w2(q)V 
i,N 

= 4 - 2 + q  ( g 4 y t - Y N - d  r i N ( e ) g N ( O i ( g ) ) -  wz(l)v). (4.13) 

We assumed above (see 0 3) that none of the exponents y i  - 2 y h  - y N  are non-negative 
integers. Furthermore we assume that 0 G 7 <c 1 holds. This turns out to hold in most 
cases. Therefore the left-hand side of (4.13) is singular at q = 0. Now since the 
functions r iN and w are regular at q = 0, both sides of equation (4.13)must vanish. Then 
we obtain the desired expression 

(s,s-,) = V +  w-2(q )q -2+q  C s i N ( e ) q Y i - Y N - d  g N ( 0 i  ( g ) ) .  (4.14) 

Now we investigate the spin-spin correlation as a function of the scaling fields. Let 
us apply the scaling law (4.10) and set /gEl eYE‘ = 1 (see (2.17)). We assume that ( O i ( g ) )  
is expendable in the irrelevant scaling fields g y r  (Wegner 1976). Then we get 

i ,N 

1 
( o i ( g ) )  = IgE!(d-Yd-yN)’yE- f iN(gre l lgE/ -y ’yE)gE (4.15) 

N N !  

with 

(4.16) 

and with a / a g N  = ar /ag , l  . . . agi,. 
On approaching the critical point the relevant scaling fields g r ’  tend to zero because 

of (2.7), whereas the irrelevant scaling fields g)” approach some constants. Let us now 
study the leading singular behaviour of the spin-spin correlation function in the critical 
limit q + 0 and g:’ + 0. In doing so we apply the transformation q + bq, gfel + bYJg:’ ,  
g y  + g;ee to equation (4.14) with (4.15). Then with b + 0 this transformation gives us 
the correct scaling behaviour prescribed by the RG for the critical limit. Since yi is 
positive for relevant and negative for irrelevant scaling fields, we find in the critical limit 
b + 0 that the terms /gEI-YN’yEgE and q - Y N g N  (with at least one irrelevant scaling field) 
vanish whereas the terms gjelIgEI-YJ’YE, q y i -d lgEl (d -y i ) ’ yE  and q - Y N g E ’  are constant. The 
term q-2c‘ diverges and the leading singular behaviour thus reads 

(s,s-,) == q-*+7 1 (e ~ c - ~ ~ - d ~ ~ l l ~ ~ l  ( ~ - Y , ) / Y E -  f i N  (gre l lgE/  -y’yE) (4.17) 
i.N N !  

where we used w(O)=  1. All operators Oi(g) contribute to the leading singular 
behaviour. Near the critical point the expectation value ( O i ( g ) )  give the singularities of 
the spin-spin correlation as a function of the thermodynamic variables. The function on 
the right-hand side of (4.17) obviously obeys scaling. One can easily see that this scaling 
function represents the leading scaling behaviour of X Si(q,  g ) ( O i ( g ) )  (cf Wegner 1975). 
The universality of this function was proved (Wegner 1976 and references therein). 

In the case of normal critical point there exist the two relevant scaling fields gE and 
gh = C h h  + 0 ( h 2 )  where h denotes the magnetic field. gh has the scaling exponent Y h  

(see (4.12)) and is conjugate to the operator Oh(q, g )  (see (4.1)). ( o h )  = (SO) is the 
magnetisation of the system. Universality means in particular (Wegner 1976) that the 

1 
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leading contributions Si(4 ,  g"', g"' (0)) obey the relation 

(4.18) 

with the arbitrary scale factors A,. The function si is related to a new RG generator g. 
We consider the case of zero magnetic field, i.e. gh = 0, and write down the first 

three leading contributions of the spin-spin correlation 

-1 2 
s^i (4, $Et gh) = A i A h S i  (47 A EgE, A hgh) 

(S,S-')  z ~ - ~ + " ( A  + Bq-"".r + C*(q-l'vl~l)l--a +. . . )V (4.19) 

with the critical exponents a = 2-d/yE, v = l / y E  and the coefficients A = soO(e), 
B = so(E)(e), C, = Cc:, C = sE0(e) and 

(4.20) 

(4.19) is in agreement with (1.1). Because of another normalization of S,  the factor V 
does not appear in the expression (1.1) of BrCzin et a1 (1974a, b, 1977). The 
universality relation (4.18) entails that the identity 

A 2 / B &  = A 2 / B C  (4.21) 

1 1  c f = -( oE(g )) 1 g"'={OJ,gh = 0 . g ~  = f 1 V 

holds with A = A EA, 8 = A ZAEB and 6 = A ZC/AE. 

5. Spin-spin correlation for the model of a non-trivial fixed point 

In order to determine the coefficients A ,  B, C and the critical exponents a, 77, v in (4.19) 
by means of Wegner's RG methods one has to choose a fixed point. In Stutzer (1977) we 
calculated a non-trivial fixed point at the dimensionality a = 4 - 6  in order E :  

H* = ~ * ( a ) + l 6  3 7T 2 c 2 0% +O(E2) 

where H*(a) is the trivial fixed point (Wegner 1976): 

and 

U$(=) is an uninteresting constant. c is an arbitrary positive constant. The function 

(5.6) a(q) = (cq2 + w -2(q))-1 

is regular at q and decays proportional to q 2  for q + m .  The evaluation of the 
fixed-point equation for (5.1) was carried out by a method given by Wegner (1976). The 
result of Shukla and Green (1974) differs from (5.1) only in an operator 
zc j, q*a(q)S,S-,~. We did not get this operator because we use a different constant c to 1 
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that of Shukla and Green (1974). The fixed point (5.1) leads to systems with normal 
critical points. 

Using the eigenoperators for the trivial fixed point of Wegner (1976) we calculated 
the operators OE and Oh(q, T ) :  

0 -1 
E - 2 e-@ J 42(q)sqs-q 

4 

4 

- &'c' e-@ (.(SI) n (4(41)s,,)sd(41 + . .  .44k +W2) (5.7) 

o h ( %  w(4)(sq-6H(T)/aS-q + o ( T 2 >  (5.8) 

4 1. ..44 i = l  

with H ( T )  = H" + 7 0 4  (see (4.1) with (2.16)) and the scaling exponent Y E  = 2 - + E .  Then 
we obtained the well known values for the critical exponents 

(5.9) 
v = $ + i $ € + O ( E  3 ), a = A €  + O(E2); 

used the value 77 = &e2 + O(e3)  (Wilson and Kogut 1974) and obtained Y h  = 3 - ; E .  

started with the Hamiltonian 
In order to derive the spin-spin correlation according to Wegner's procedure we 

(5.10) 

In contrast to equation (3.5) we neglected already at this point terms of order T~ and all 
redundant and irrelevant contributions which give only corrections to the leading 
scaling behaviour. With the initial condition $1(q, 0) = &((I, 0) = 0 (cf (3.2)) we solved 
the RG equation for H I :  

+l(q, ~ = - e  (e ~ ( 4  e ' > - a ( q > > V + m  c e (e a (4  e'>-a(q))OE€ 

+*(q, I) = ed'(l --41~)(e~'a'(q e ' ) - a2 (q>)v  

(5.11) d l  21 16 2 2 yEl  41 2 

32 2 2 y E l  21 41 2 -TT c e [e (e a (q  e1)-a2(q))+(e6'a3(q e ' ) - a 3 ( q ) ) ] O ~ ~ .  (5.12) 

In the limit / - + C O  we have (q e')2"a"(q e ' ) + =  1 ( n  = 1, 2 ,  . . .) and d ( q  e')-+O. As 
predicted the operators Ol(qI e', g e") vanish in the limit, because their kernels contain 
the function ~ $ ( / 4 ~  +.  , . +41-1 -4 ,  ell). The condition (3.6)is not true for the coefficients 
of the operators V and OE in 4 ~ ~ .  As for the term proportional to 1 ed' the reason is that 
logarithmic contributions of q e' appear in the derivation of 492.  In 0 3, however, we did 
not discuss such logarithmic contributions. If we apply the RG transformation B..i to 
Hr with sufficiently large [ one can show that we get the Hamiltonian f i 0  = B-rHp by 
replacing f by zero. Then (3.9) gives the operator correlation function 

1 
V -(oh(q, T)oh(-q, 7)) 

(5.13) 
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In order to be able to apply the relation (4.15) we determined the coefficients b i ( ~ , ~ )  in 
(2.18) for i = 0, E and obtained 

(5.14) 

Equation (5.13) with (5.14) confirms the structure (3.10) of operator-operator cor- 
relation functions. The regular terms Rihh contain the functions a"(q). The singular 
contributions Sihh are proportional to the powers q-'" diverging in q = 0. From (5.9) we 
can see that the exponents -2 and -4 agree with the values of -2 + T), (-2 + T ) ) / v  and 
(-2 + q)(1 - a ) / v  respectively in order E'. The regular functions a" (q)  are not uni- 
versal, because they depend on the cut-off function 0. Furthermore they show no 
scaling behaviour. 

From the equations (4.7), (4.17), (4.20), (5.13) with (5.14) it follows that the 
spin-spin correlation behaves like 

(5.15) 

in the critical region, where c*  = C L E .  c :  is a value of a functional integral (see (4.20)) 
which we did not calculate. One can estimate that c: is of order E - ' .  Therefore, and 
since b , ( E , E )  is of order e - ' ,  we obtain the correlation function (5.15) only in order E'. 

The universality relation (4.18) requires that, in addition to the ratio in (4.21), the 
ratio AD/BC is independent of the scale factors A,, where D = sEjE)(e). Applying a, 
transformation c-, reflecting % +  @we get from (5.15) A h  = (c/c)"~ and A E  = C/C 
uniquely. The ratios mentioned before have the values 

A D  -= 1 A' 3 
BC 3 2 ~ "  BC 
-=- (5.16) 

and are independent of the arbitrary constants C and 
universal. 

respectively. Thus (5.15) is 

We quote the result of Fisher and Aharony (1973) in order eo and T > 0: 

V-'(SqS-q)-CF(q-2-2q-47+q-471-~6 +. .  .) (5.17) 

with an arbitrary constant cF. From this equation we find for the ratio in (4.21) 

( A ~ ) ' / B ~ c '  = -;CY (5.18) 

with the constants A F ,  BF,  CF and c: of Fisher. Because of universality the relation 

C+ = - 3 1 1 6 ~ '  (5.19) 

must be true. With this value the spin-spin correlation (5.15) reads for T > Tc: 
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